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Depolarization of decaying counterflow turbulence in He II
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We present experimental evidence backed up by numerical simulations that the steady-state vortex tangle
created in He II by heat-transfer counterflow is strongly polarized. When the heater that generates the coun-
terflow turbulence is switched off, the vortex tangle decays, the vortex lines randomize their spatial orientation
and the tangle’s polarization decreases. The process of depolarization slows down the recovery of the trans-
verse second sound signal which measures the vortex line density; at some values of parameters it even leads
to a net decrease of the amplitude of the transverse second sound prior to reaching the universal —3/2 power
temporal law decay typical of classical homogeneous isotropic turbulence in a finite-sized channel.
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I. INTRODUCTION

Quantum turbulence [1,2] has been investigated since the
pioneering thermal counterflow experiments of Vinen [3]
half a century ago, but the underlying physics is far from
being fully understood. This is perhaps not surprising. The
most recent studies have revealed that quantum turbulence is
similar to turbulence in ordinary fluids [2], often regarded as
the last unsolved problem of classical physics. The connec-
tion between quantum turbulence and classical turbulence is
indisputable in experiments in which quantum turbulence is
generated in liquid helium using classical techniques, nota-
bly by towing a grid through a stationary sample [4—6], or by
oscillating the grid (both in He II [7] and *He-B [8]), or by
stirring liquid helium with counter-rotating cylinders [9].

On the contrary, thermal counterflow is a form of motion
peculiar to superfluid hydrodynamics [10] and has no analog
in an ordinary viscous fluid. For this reason it was often
stated that counterflow turbulence in He II has nothing to do
with classical turbulence, but recent experiments seem to
suggest otherwise [11]. Tt is known [10] that He II behaves
like the intimate mixture of two copenetrating fluid compo-
nents: the viscous normal fluid (of density p, and velocity v,,)
and the inviscid superfluid (of density p, and velocity v,),
where p=p,+p, is the total density of liquid helium. Thermal
counterflow is set up by applying a voltage to a resistor
(heater) located at the closed end of a channel open to the
helium bath at the other end. The heat flux is carried away
from the heater by the normal fluid alone, and, by conserva-
tion of mass, a superfluid current arises in the opposite di-
rection. In this way a relative velocity (counterflow)
Uns=|V,—V,| is created along the channel which is propor-
tional to the applied heat power. At relatively small values of
v,s the heat-flow transfer becomes turbulent due to the ap-
pearance of an apparently disordered tangle of superfluid
vortex lines. The intensity of the turbulence is represented by
the vortex line density L (total length of vortex lines, A,
divided by the volume 5%), which is measured by detecting
the extra attenuation of a second sound resonance wave ex-
cited between transducers across the channel. Clearly, if one
attempted to find a possible connection between counterflow
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turbulence and classical turbulence, the likely candidate
would be turbulent thermal convection. In fact, as noticed in
Ref. [11], the efficiency of the turbulent heat transport in
both cases is strikingly similar, in that it depends on the
driving temperature difference with a power close to 1/3
[12]. Most investigations of counterflow turbulence were
concerned with steady-state heat transfer. In this case the
vortex line density which is measured agrees with the steady-
state solution of Vinen’s phenomenological equation which
expresses the dynamical balance between generation and de-
cay terms in the presence of a steady counterflow velocity
v,,s- Analysis of the problem in terms of vortex dynamics and
numerical simulations [13] confirmed Vinen’s equation and
its predictions in the steady-state regime. It is fair to con-
clude that steady-state counterflow turbulence is understood
relatively well, although there are still some open questions
concerning the existence of weak and strong turbulence re-
gimes [1], the possibility that the normal fluid becomes tur-
bulent [14] and an overall description in terms of a single
phase diagram [15,16].

The temporal decay of counterflow turbulence, on the
contrary, is relatively less understood than the steady-state
regime. For example, it has been noted [2,17] since the early
experiments [3] that the decay of the vortex line density is
slower than predicted by Vinen’s equation. Recently, a re-
markable connection between the decay of quantum and that
of classical turbulence has been established [11]. Measure-
ments performed in two channels of square cross section 6
X 6 mm? and 10X 10 mm? have shown that during the late
stage of the decay the vortex line density obeys the law

D(3C 3/2
L(t) = (—/)_(t+ tvo)_3/27 (1)
2K\ Vogp

where 1 is time, C=1.62+0.17 [18] is the Kolmogorov con-
stant, k=~ 1073 cm?/s is the quantum of circulation, D is the
channel size [19], 1,, is a fitting parameter which represents
the virtual origin of the time axis and vy is a (temperature
dependent) effective kinematic viscosity of order of . If, in
analogy with the seminal problem of He II in a rotating con-
tainer, one assumes that the average superfluid vorticity is
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kL, it can be shown that the decay law (1) can be derived
from a purely classical spectral model of turbulence decay
[20].

The aim of this paper is to understand an apparently puz-
zling feature at the early stage of the observed decay, that the
attenuation of the second sound signal across the channel
initially increases rather than decreases. At first sight, assum-
ing that the tangle is homogeneous and isotropic, an increase
of the attenuation would mean that the turbulence becomes
stronger, which cannot be (the heater is switched off).

II. EXPERIMENTAL SETUP AND DATA

Our experimental setup has been described in detail in
Ref. [21]. The data used in this paper were taken in the
channel of square 10X 10 mm? cross section, which is nomi-
nally 11.5 cm long. The second sound sensors were placed at
opposite walls across the channel, in the middle of its length.
The channel was also equipped with two thermometers
placed in its ends, capable of measuring the temperature dif-
ference between the closed and open ends in steady-state
counterflow turbulence. We have attempted to measure the
temperature decay when the heater was switched off and
found that it is very fast, beyond the time resolution of our
resistance bridge of order of few tenths of a second.

The time evolution of the second sound signal when the
heater at the closed end of the channel was switched off is
complex and may depend on the channel’s geometry [22].
The very early stage of the decay, when the turbulence can-
not be treated as isothermal but rather as thermally driven,
needs special attention and will be discussed elsewhere. On
the other hand, the late stage of the decay obeys the classical
Eq. (1) as discussed in our earlier papers [11,21]. Here we
are interested in the early to middle stages of the decay,
which are characterized by a considerably slower decay rate.
What is puzzling is that at some parameters we observed a
net decrease of the second sound amplitude, as shown in Fig.
1. The vortex line density L(¢) is usually determined from the
measured second sound amplitude a(f) using the relation

[3.4]
_ 1680
L= <a(r)_1)’ @

where a is the unperturbed second amplitude with no ap-
plied heat into the channel, A is the full width at half-height
of the second sound resonance peak (typically 10 Hz) and B
is the temperature-dependent dissipational mutual friction
coefficient [23]. However, Eq. (2) is valid only in the as-
sumption that the vortex tangle is homogeneous and isotro-
pic. It has been shown a long ago in rotating containers [3]
that the second sound is not attenuated by quantized vortices
if it propagates in the direction along the vortex core. There-
fore, if the vortex tangle is polarized and the degree of po-
larization is not known, the second sound amplitude alone
does not provide enough information to calculate the total
vortex line density. This is why we plot in Fig. 2 the quantity
ay/a(t)—1, not the total vortex line density, which we do not
know. In our previous paper [21] we speculated that the in-
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FIG. 1. Relative amplitude a(f)/a, of the transverse second
sound standing mode a(r) at T=1.6 K versus time, where aj is the
unperturbed amplitude with no applied heat into the channel. Nega-
tive time corresponds to the initial steady-state counterflow turbu-
lence generated by applying powers: 0.5 W (<), 0.23 W (O),
0.18 W (O), and 0.14 W (various triangles) to the resistor before
located at the closed end. Three different decay curves are shown to
illustrate the level of reproducibility for the lowest applied power.
At r=0 the power is switched off and the second sound amplitude
gradually recovers to its unperturbed value. The inset shows ana-
logical data measured at 7=2.0 K; applied powers: 0.52 W (various
triangles), 0.41 W (<), and 0.32 W (O). Note that the recovery
process is not monotonic; at most applied powers the amplitude has
another local minimum, marked by arrows.

crease in time of the quantity ay/a(t)—1 can be explained by
the fact that the vortex tangle in the steady-state counterflow
turbulence is highly polarized by the applied counterflow;
therefore, when the heater is switched off, the orientation of
the vortex lines becomes more random. To confirm this in-
terpretation we have performed the numerical simulations
described in the next section.

III. NUMERICAL SIMULATIONS

Following Schwarz [13], we represent superfluid vortex
lines as space curves s(z, ¢) which move according to [24]

ds
E=VS+VI~+CZS'><(V”—VS—V,'), (3)

where the prime denotes differentiation with respect to arc-
length & a=Bp,/(2p) is a friction coefficient and v; is the
self-induced velocity of the vortex line. At a given point s,
the self-induced velocity v, is given by the Bio-Savart law
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FIG. 2. Log-log plot of the quantity [ay/a(r)—1] versus time
measured at 7=1.6 K. Under the assumption that the tangle is ho-
mogeneous and isotropic, this quantity would be proportional to the
vortex line density L. For given experimental conditions, the level
a(t)/ap—1=0.1 would correspond to the vortex line density
L=~10° cm™2. For details, see text. The different decay curves cor-
respond to different initial levels of steady-state counterflow turbu-
lence generated at powers 0.5 W (<), 0.23 W (OJ), 0.18 W (O),
and 0.14 W (various triangles), respectively. Three individual decay
curves are shown to appreciate the level of reproducibility for the
lowest applied power. The inset shows analogical data measured at
T=2.0 K; applied powers: 0.52 W (various triangles), 0.41 W (<),
and 0.32 W (O).

— 3 (4)

where the line integral extends over the entire vortex con-
figuration. The numerical technique to discretize the vortex
filaments, to integrate Eq. (3) and to desingularize the Biot-
Savart integral (4) are standard (see Refs. [13,27] and refer-
ences therein). All calculations are performed in a periodic
box of size b=1 cm. It is common in the literature to use the
following local induction approximation (LIA) to the exact
Biot-Savart law:

v,~ fBs' Xs", (5)

where B=«/(4m)In[1/(s"a,)] and a,~ 1078 cm is the vortex
core radius. The use of LIA is computationally convenient,
because the cpu time is proportional to the number of dis-
cretization points, N, along the vortex filaments, whereas the
cost of the Biot-Savart law grows with N2, In general, given
a particular problem, it is not altogether clear if the LIA is
sufficiently accurate. Experience shows that in some prob-
lems the LIA is a good approximation [13], but in others
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FIG. 3. Computed vortex tangle at the end of the growth
stage.

(rotating turbulence [25]) the Biot-Savart law is necessary.
There are also cases (vortex knots [26]) in which the LIA
fails.

The results presented in this paper are obtained using the
Biot-Savart law, but we have also done some runs using the
LIA for the sake of comparison.

First, a vortex tangle is produced by applying a uniform
counterflow: v,=(0,0,1) cm/s, v,=(0,0,0), for simplicity
along the z direction upon an initial arbitrary vortex configu-
ration (three vortex rings set at random positions and orien-
tation). Because of the friction (we use @=0.3 that approxi-
mately corresponds to the experimental data measured at 2 K
shown in the insets of Figs. 1 and 2), energy is quickly fed
into the superfluid vortices, which grow in size [27], recon-
nect with each other and form a disordered tangle, as shown
in Fig. 3. We stop the growth when the total vortex length is
A=188.9 cm (a larger vortex length would not be practical
due to the computational cost of the Biot-Savart law). As
noted first by Schwarz [13] and then confirmed in the experi-
ments [28], the counterflow tangle thus generated is not iso-
tropic. In our case the Cartesian projections of the vortex
length along the x, y, and z directions are, respectively,
A,=119.4 cm, A;=120.7 cm, and A,=6.81 cm, hence the
polarization is expressed by the three ratios A,/A=0.63
~A,/A=0.64 which is much larger than A /A=0.04. These
values mean that the vortex loops are flattened in the xy
plane perpendicular to the counterflow direction z. This pan-
cakelike structure is revealed in Figs. 4(a) and 4(b) which
show transverse and longitudinal views of the vortex
configuration.

Second, we reset r=0, v,=0, and allow the tangle to
decay under the action of the Biot-Savart law and the
same friction @=0.3. The time behavior of the projected
lengths A,, Ay, and A, are shown in Fig. 5; for the sake of
graphical clarity the projected lengths are normalized by the
values at the beginning of the decay, A,(0)=119.4 cm,
A,(0)=120.7 cm, and A (0)=6.18 cm. It is apparent that,
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FIG. 4. Projections onto the xy plane (top) and the xz plane
(bottom) of the vortex tangle of Fig. 3.

whereas A, and A, decrease with time, A, at first increases,
in qualitative agreement with the experimental observations.
Transverse and longitudinal views of the vortex tangle at
t=0.1 s when A=121.6 cm are shown in Fig. 6; clearly the
increase of A_ is due to vortex loops which randomize their
spatial orientation when the normal flow is switched off.
Essentially, the vortex tangle depolarizes with time. At
this time t=0.1 s the decaying tangle is still anisotropic
(A,=71.9 cm, A;=69.7 cm, and A,=33.6 cm) but the polar-
ization ratios are now A,/A=0.59~A,/A=0.57 which is
of the same order of magnitude as A./A=0.28. Indeed, Fig.
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FIG. 5. Relative projected lengths A, (7)/A,(0) (a, triangles
pointing up), A,(1)/A,(0) (b, triangles pointig down), and
A, (1)/A(0) (¢, squares) versus time during the decay; the values at
the beginning of the decay are A, (0)=119.4 cm, A ,(0)=120.7 cm,
and A,(0)=6.81 cm. Also plotted are the same quantities
A()/A(0) (d, crosses), A (1)/A,(0) (e, diagonal crosses) and
A(1)/A(0) (f, circles) but computed using the LIA starting from
the same initial state.

7(b) shows that the pancakelike stucture is still visibly but
much less marked than in Fig. 4(b).

A natural question to ask is whether the depolarization
effect is present if, starting from the same initial condition at
the beginning of the decay, the time evolution of the vortex
lines is computed using the local induction approximation
instead of the exact Biot-Savart law. The additional points
marked on Fig. 5 show that the LIA gives a fairly good
approximation to the correct evolution. This result is perhaps
a bit surprising due to the anisotropy of the initial configu-
ration, but suggests that the depolarization of the tangle
when v,, is suddenly set to zero is an effect driven more by
vortex reconnections than by long-range velocity fields. This
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FIG. 6. Computed vortex tangle at r=0.1 s during the decay
stage.
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FIG. 7. Projections onto the xy plane (top) and the xz plane
(bottom) of the vortex tangle of Fig. 6.

conclusion must be taken with caution, however, because
there is no reason to think that the LIA is still a good ap-
proximation to the Biot-Savart law if the vortex line density
is much larger and the vortex lines are closely packed
together.

In summary, the numerical result confirms in a qualitative
way our earlier conjecture [21] that, once the heater is
switched off, the vortices randomize.

IV. DISCUSSION

What is detected by the second sound sensors in the ex-
periment, however, is not the total vortex length, nor the
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individual projected lengths. It can be shown [29] that the
attenuation of a second sound wave of angular frequency w
in the presence of a straight vortex line is sin?(y)(2B/(2w),
where v is the angle between the vortex line and the direc-
tion of sound propagation, € is the vorticity and Q=|Q|.
This sine squared law has been confirmed experimentally by
measuring second sound signals in a container of helium
held at tilted angles with respect to the axis of rotation of the
cryostat [30]. A consequence of this law is that there are in
principle two limiting cases. If the tangle is fully polarized
and all vortices are on planes perpendicular to the direction
of the counterflow, since (sin’(7y))=1/2 averaged over the
unit disk, the sensors detect L/2. If the tangle is isotropic,
since (sin?(7y))=2/3 averaged over the unit sphere, the sec-
ond sound sensors detect 2L/3, where L is the actual vortex
line density, a factor of 4/3 higher [31].

To make better contact between the experiment and the
numerical simulation we proceed in the following way. Our
computed vortex tangle is discretized into a large number of
points (about 4000 during the decay stage). Consider the
straight vortex segment Q=xkA=«(A,,A,,A;) joining two
points, where A=A cos(y;), Ay=A cos(y,), A=A cos(ys),
A=|A :V’A§+A§+Af, and ; (i=1,2,3) are the directional
cosines with yj+7yj+y;=1. Each segment contributes an
amount proportional to AS,=A sinz('yl)=(A§+A3)/ A to the
attenuation of a second sound wave propagating in the x
direction. Similarly, the contributions to the attenuation of
second sound traveling in the y and z directions are
AS>,=(A)2(+A§)/A and ASZ=(Af+A§)/A, respectively. By
summing AS,, AS,, and AS, over the entire collections of
segments, we obtain the quantities S,, S,, and §,, which are
proportional to the second sound attenuation along x, y, and
z. The time dependence of S,, S,, and S, during the decay
(which we plot in a normalized way for better comparison),
is shown in Fig. 8. It is apparent that the transverse attenua-
tions (S, and S,) decay slower than the longitudinal attenua-
tion, S,. This is in qualitative agreement with our interpreta-
tion of the experimental data (some of the attenuation curves
measured at 1.6 K and 2 K shown in Fig. 1 reach a pleateau,
or even increase, before decaying). The slower rate of decay
of the transverse attenuation, or the fact that it reaches a
pleateau or even increases, is something which is likely to
depend on the vortex line density, amount of polarization and
friction a. Due to the arbitrariness of the initial state in our
decay model, quantitative predictions are not possible. Some
qualitative insight about behavior on a slightly longer time
scale than in Fig. 5 can perhaps be inferred using the com-
putational convenient LIA. As said before, we have no rea-
son to think that the LIA is still a good approximation to the
Biot-Savart law for larger A, but we do the following nu-
merical experiment: starting from few seeding vortex loops
as before, first we impose v,=(0,0,1) cm/s and create a
vortex tangle at @=0.1 (this approximately corresponds to
the data measured at 1.6 K) with the LIA; the properties of
this tangle are A=363.5 cm, A,=231.4 cm, A,=231.1 cm,
A.=16.34 cm, S,=182.5, §,=183.0, and SZ=361.4. Second
we set v,=0 and let the tangle decay under LIA and the same
a=0.1. The resulting attenuation curves are shown in Fig. 9:
again, note that whereas S, decreases, S, and S, have pro-
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FIG. 8. Plot of Sx/Sf: (a, triangles pointing up), S},/Sg (b, tri-
angles pointing downs), and S,/ S? (¢, circles) versus time; the quan-
tities S,, S,, and S,, defined in the text, are proportional to the
observed second sound signal propagating in the x, y, and z direc-
tions, respectively, according to the sine square law. The normaliz-
ing values S;)=95.4, S8=93.9, and S?: 188.4 are the values of S,, Sy
and S, at the start of the decay. Note the relatively slower decay of
the transverse signals S, and .

longed plateaus before they eventually decrease at larger
time, again in qualitative agreement with the experiment.

V. CONCLUSIONS

Before concluding, some words of caution are necessary.
The experimentally observed temporal decay of the counter-
flow He II turbulence is very complex, displays several re-
gimes and the details depend on various factors as the chan-
nel geometry, starting level of the counterflow steady-state
turbulence and temperature. The described secondary mini-
mum in the second sound amplitude was not observed over
the entire parameter space covered by the experiments, but is
clearly visible during the early decay phase over a robust
range of heat flux as shown in Fig. 1. Clearly the effect is at
first puzzling: why should the second sound attenuation level
out or even increase rather than decrease when the heater is
switched off? Similarly, it must be kept in mind that the
numerical simulations are necessarily idealized. The numeri-
cal model refers to vortex line densities much lower than in
the experiments and does not include the effects of the chan-
nel’s boundaries on the decay of the vortex tangle. Perhaps
more important is the fact that the initial state of the com-
puted decay is arbitrary; it is obtained by interrupting a
driven growth stage, so it does not correspond to a statistical
steady-state counterflow turbulence at a certain value of a.

The simulation also assumes that the normal fluid is per-
fectly stationary, although in reality the normal fluid (either
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FIG. 9. Plot of S,/ (a), S,/S) (b), and S,/5? (c) versus time
over a longer time range according to the LIA with a=0.1. The
normalizing values §)=182.5, 5)=183.0, and §7=361.4.4.

laminar or turbulent [14]), must have its own decay time
scale. Our simulation necessarily ignores any flow that might
be induced by the vortex tangle in the normal fluid. A proper
account of this possible effect would need solving coupled
equations describing motion of both fluids, which at present
is beyond our scope. Let us mention here that an attempt to
couple the normal fluid was made by Schwarz and Rosen
[17], who simulated turbulence in the normal fluid by an
eddy of a fixed size. That the late decay displays the classical
power law suggests normal fluid turbulence might be an
issue.

Still, the numerical evidence is robust: the counterflow
vortex tangle is polarized, and, once the normal fluid is set to
zero, the vortex lines depolarize and the projected vortex
length in the direction along the channel axis, A_, increases
before decaying later. Because of this depolarization, the
transverse second sound signal does not decay immediately.
The qualitative agreement between the experiments and the
numerical simulations confirms earlier evidence that counter-
flow turbulence is strongly polarized [28] and solves the ap-
parent experimental puzzle that, when the heater which gen-
erates the turbulence is switched off, the transverse second
sound attenuation appears to increase rather than decrease.
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